Методы моделирования и оптимизации решений
Модели управления запасами.
Любая организация должна поддерживать некоторый уровень запасов своих ресурсов, чтобы избежать простоев или перерывов в технологических процессах и сбыте товаров или услуг. Для производственной фирмы необходимы определенные запасы материалов, комплектующих изделий, готовой продукции, для банка — денежной наличности, для больницы — лекарств, инструментов и т.д. Поддержание высокого уровня запасов повышает надежность функционирования организации и избавляет от потерь, связанных с их нехваткой. С другой стороны, создание запасов требует дополнительных издержек на хранение, складирование, транспортировку, страхование и т.п. Кроме того, избыточные запасы связывают оборотные средства и препятствуют прибыльному инвестированию капитала, например, в ценные бумаги или банковские депозиты.
Модели управления запасами позволяют найти оптимальное решение, т.е. такой уровень запаса, который минимизирует издержки на его создание и поддержание при заданном уровне непрерывности производственных процессов.
Модели линейного программирования.
Эти модели применяют для нахождения оптимального решения в ситуации распределения дефицитных ресурсов при наличии конкурирующих потребностей. Например, с помощью модели линейного программирования управляющий производством может определить оптимальную производственную программу, т.е. рассчитать, какое количество изделий каждого наименования следует производить для получения наибольшей прибыли при известных объемах материалов и деталей, фонде времени работы оборудования и рентабельности каждого типа изделия.
Большая часть разработанных для практического применения оптимизационных моделей сводится к задачам линейного программирования. Однако с учетом характера анализируемых операций и сложившихся форм зависимости факторов могут применяться и другие типы моделей: при нелинейных формах зависимости результата операции от основных факторов — модели нелинейного программирования; при необходимости включения в анализ фактора времени — модели динамического программирования; при вероятностном влиянии факторов на результат операции — модели математической статистики (корреляционно-регрессионный анализ).